Transmisores: El transmisor es un instrumento que capta la variable en proceso y la transmite a distancia a un instrumento indicador o controlador; pero en realidades eso y mucho más, la función primordial de este dispositivo es tomar cualquier señal para convertirla en una señal estándar adecuada para el instrumento receptor, es así como un transmisor capta señales tanto de un sensor como de un transductor,aclarando siempre que todo transmisor es transductor más no un transductor puede ser un transmisor; como ya sabemos las señales estándar pueden ser neumáticas cuyos valores están entre 3 y 15 Psi, las electrónicas que son de 4 a 20 mA o de 0 a 5 voltios DC,las digitales que entregan 0 o 5 voltios para 0 o 1 respectivamente.
Tipos de transmisores
Transmisor neumático: Se fundamentan en el principio que cumple el sistema tobera obturador que cociste en un tubo con un suministro constante de presión no superior a los 25 Psi que pasa por una restricción que reduce el diámetro al rededor de 0.1 mm y que en su otro extremo se torna en forma de tobera con un diámetro de 0.25 - 0.5 mm que esta expuesto a la atmósfera ocasionando un escape que es regulado por un obturador el cual cumple la misión de controlar el escape proporcional a la separación entre él y la tobera, la función de la tobera - obturador es que a medida que la lamina obturadora disminuya o aumente la distancia hacia la tobera ocasionara un efecto inversamente proporcional sobre la presión interna que es intermedia entre la presión atmosférica y la de suministro igual a la señal de salida del transmisor que para la tobera totalmente cerrada equivale a 15 Psi y totalmente abierta a 3 Psi.
Para la obtención de una salida eficiente y a causa de diminutos volúmenes de aire que se obtienen del sistema se le acopla una válvula piloto que amplifica, formando un amplificador de dos etapas.
La válvula servo-pilotada consiste en un obturador que permite el paso de dos caudales de aire los cuales nos determinan la salida mediante los diferenciales de presión entre las superficies uno y dos logrando vencer el resorte que busca sostener la válvula cerrada, aunque realmente existe una mínima abertura que lo que nos determina los 3 Psi como salida mínima. Las funciones de la válvula son:
Aumento del caudal suministrado o del caudal de escape para conseguir tiempos de respuesta inferiores al segundo. Amplificación de presión (ganancia),de cuatro a cinco para obtener la señal neumática de 3 - 15 Psi. Los transmisores neumáticos presentan las siguientes características:
-Un consumo de aire mas bajo para el caudal nulo de salida.
-Un caudal mayor de salida hacia el receptor.
-Una zona muerta de presiones de salida.
-Son de equilibrio de fuerzas.
-Son de acción directa.
Transmisor electrónico: Generalmente utilizan el equilibrio de fuerzas, el desequilibrio da lugar a una variación de posición relativa, excitando un transductor de desplazamiento tal como un detector de inductancia o un transformador diferencial. Un circuito oscilador asociado con cualquiera de estos detectores alimenta una unidad magnética y es así como se complementa un circuito de realimentación variando la corriente de salida en forma proporcional al intervalo de al variable en proceso. Su precisión es de 0.5 - 1 % en una salida estándar de 4 - 20 mA. Se caracterizan por el rango de entrada del sensor.
Transmisor inteligente: Son aquellos instrumentos capaces de realizar funciones adicionales a la de la transmisión de la señal del proceso gracias a un microprocesador incorporado. También existen dos modelos básicos de transmisores inteligentes:
El capacitivo que cociste en un condensador compuesto de un diafragma interno que separa las placas y que cuando se abren las placas es porque se realiza una presión este diafragma se llena de aceite lo cual hace variar la distancia entre placas en no mas de 0.1 mm. luego esta señal es amplificada por un oscilador y un demodulador que entregan una señal análoga para ser convertida a digital y así ser tomada por el microprocesador.
El semiconductor sus cualidades permiten que se incorpore un puente de whetstone al que el microprocesador linealiza las señales y entrega la salida de 4 - 20 mA.
Los transmisores inteligentes permiten leer valores, configurar el transmisor, cambiar su campo de medida y diagnosticar averías, calibración y cambio de margen de medida.
Algunos transmisores gozan de auto-calibración, auto-diagnóstico de elementos electrónicos; su precisión es de 0.075 %. Monitorea las temperaturas, estabilidad, campos de medida amplios, posee bajos costes de mantenimiento pero tiene desventajas como su lentitud, frente a variables rapidez puede presentar problemas y para el desempeño en las comunicaciones no presenta dispositivos universales, es decir, no intercambiable con otras marcas.
Ajustes
Como calibrar un transmisor:Chequeo y Ajustes Preliminares: Observar el estado físico del equipo, desgaste de piezas, limpieza y respuesta del equipo.
Determine los errores de indicación del equipo comparado con un patrón adecuado (según el rango y la precisión).
Llevar ajustes de cero, multiplicación, angularidad y otros adicionales a los margenes recomendados para el proceso o que permita su ajuste en ambas direcciones (no en extremos) excuadramientos preliminares. Lo cual reducirá al mínimo el error de angularidad.
Ajuste de cero: Colocar la ariable en un valor bajo de cero a 10 % del rango o en la primera división representativa a excepción de los equipos que tienen supresión de cero o cero vivo, para ello se debe simular la variable con un mecanismo adecuado, según rango y precisión lo mismo que un patrón adecuado.
Si el instrumento que se esta calibrando no indica el valor fijado anteriormente, se debe ajustar del mecanismo de cero( un puntero, un resorte, reóstato, tornillo micrométrico, etc).
Si el equipo tiene ajustes adicionales con cero variable, con elevaciones o supresiones se debe hacer después del punto anterior de ajuste de cero.
Ajuste de multiplicación: Colocar la variable en un valor alto del 70 al 100 %.
Si el instrumento no indica el valor fijado, se debe ajustar el mecanismo de multiplicación o span ( un brazo, palanca, reóstato o ganancia).
Repetir los dos últimos pasos hasta obtener la calibración correcta para los valores alto y bajo.
Ajuste de angularidad:
Colocar la variable al 50% del span.
Si el incremento no indica el valor del 50% ajustar el mecanismo de angularidad según el equipo. Repetir los dos últimos pasos 4 y 5 hasta obtener la calibración correcta, en los tres puntos.
Nota: Después de terminar el procedimiento se debe levantar un acta de calibración, aproximadamente en cuatro puntos: Valores teóricos contra valores reales ( lo mas exactamente posible), tanto ascendente como descendente para determinar si tiene histéresis.
miércoles, 8 de noviembre de 2017
Medición de temperatura
Medición de temperatura: La temperatura es una magnitud física que expresa el grado o nivel de calor o frío de los cuerpos o del ambiente. En el sistema internacional de unidades, la unidad de temperatura es el Kelvin. A continuación, de forma generalizada, hablaremos de otras unidades de medida para la temperatura.
En primer lugar podemos distinguir, por decirlo así, dos categorías en las unidades de medida para la temperatura: absolutas y relativas.
Absolutas son las que parten del cero absoluto, que es la temperatura teórica más baja posible, y corresponde al punto en el que las moléculas y los átomos de un sistema tienen la mínima energía térmica posible.
Kelvin (sistema internacional): se representa por la letra K y no lleva ningún símbolo “º” de grado. Fue creada por William Thomson, sobre la base de grados Celsius, estableciedo así el punto cero en el cero absoluto (-273,15 ºC) y conservando la misma dimensión para los grados. Esta fue establecida en el sistema internacional de unidades en 1954.
Relativas por que se comparan con un proceso fisicoquímico establecido que siempre se produce a la misma temperatura.
Grados Celsius (sistema internacional): o también denominado grado centígrado, se representa con el símbolo ºC. Esta unidad de medida se define escogiendo el punto de congelación del agua a 0º y el punto de ebullición del agua a 100º , ambas medidas a una atmósfera de presión, y dividiendo la escala en 100 partes iguales en las que cada una corresponde a 1 grado. Esta escala la propuso Anders Celsius en 1742, un físico y astrónomo sueco.
Grados Fahrenheit (sistema internacional): este toma las divisiones entre los puntos de congelación y evaporación de disoluciones de cloruro amónico. Así que la propuesta de Gabriel Fahrenheit en 1724, establece el cero y el cien en las temperaturas de congelación y evaporación del cloruro amónico en agua. Este utilizo un termómetro de mercurio en el que introduce una mezcla de hielo triturado con cloruro amónico a partes iguales. Esta disolución salina concentrada daba la temperatura más baja posible en el laboratorio, por aquella época. A continuación realizaba otra mezcla de hielo triturado y agua pura, que determina el punto 30 ºF, que después fija en 32 ºF (punto de fusión del hielo) y posteriormente expone el termometro al vapor de agua hirviendo y obtiene el punto 212 ºF (punto de ebullición del agua). La diferencia entre los dos puntos es de 180 ºF, que dividida en 180 partes iguales determina el grado Fahrenheit.
En primer lugar podemos distinguir, por decirlo así, dos categorías en las unidades de medida para la temperatura: absolutas y relativas.
Absolutas son las que parten del cero absoluto, que es la temperatura teórica más baja posible, y corresponde al punto en el que las moléculas y los átomos de un sistema tienen la mínima energía térmica posible.
Kelvin (sistema internacional): se representa por la letra K y no lleva ningún símbolo “º” de grado. Fue creada por William Thomson, sobre la base de grados Celsius, estableciedo así el punto cero en el cero absoluto (-273,15 ºC) y conservando la misma dimensión para los grados. Esta fue establecida en el sistema internacional de unidades en 1954.
Relativas por que se comparan con un proceso fisicoquímico establecido que siempre se produce a la misma temperatura.
Grados Celsius (sistema internacional): o también denominado grado centígrado, se representa con el símbolo ºC. Esta unidad de medida se define escogiendo el punto de congelación del agua a 0º y el punto de ebullición del agua a 100º , ambas medidas a una atmósfera de presión, y dividiendo la escala en 100 partes iguales en las que cada una corresponde a 1 grado. Esta escala la propuso Anders Celsius en 1742, un físico y astrónomo sueco.
Grados Fahrenheit (sistema internacional): este toma las divisiones entre los puntos de congelación y evaporación de disoluciones de cloruro amónico. Así que la propuesta de Gabriel Fahrenheit en 1724, establece el cero y el cien en las temperaturas de congelación y evaporación del cloruro amónico en agua. Este utilizo un termómetro de mercurio en el que introduce una mezcla de hielo triturado con cloruro amónico a partes iguales. Esta disolución salina concentrada daba la temperatura más baja posible en el laboratorio, por aquella época. A continuación realizaba otra mezcla de hielo triturado y agua pura, que determina el punto 30 ºF, que después fija en 32 ºF (punto de fusión del hielo) y posteriormente expone el termometro al vapor de agua hirviendo y obtiene el punto 212 ºF (punto de ebullición del agua). La diferencia entre los dos puntos es de 180 ºF, que dividida en 180 partes iguales determina el grado Fahrenheit.
martes, 7 de noviembre de 2017
Medición de Nivel
Medición de Nivel: Los medidores de nivel pueden clasificarse en dos grupos generales: directos e indirectos. Los primeros aprovechan la variación de nivel del material (líquido o sólidos granulares) para obtener la medición. Los segundos, usan una variable, tal como presión, que cambia con el nivel del material. Para cada caso, existen instrumentos mecánicos y eléctricos disponibles.
Los primeros dispositivos usados para indicar nivel consistían de tubos de vidrio de modo tal que el operador viese el fluido de proceso. Con el correr del tiempo, los cristales planos del tipo reflexivo o transparente han reemplazado a los anteriores. En el caso de que el fluido sea peligroso (corrosivo, tóxico, etc.) como para emplear vidrio, se utilizan ¡os de tipo Éiagoético, en los cuales un imán instalado en un flotador permite el desplazamiento de un seguidor y este mecánicamente mueve un indicador relacionado a una escala graduada.
El empleo de flotadores es muy común, generalmente para acciones de control (interruptores de nivel). Del mismo modo los despSazadores, tienen acciones similares a los flotadores o boyas, con la diferencia que su movimiento, es más restringido. Cuando el nivel de líquido cambia, la cantidad cubierta por el desplazador, va creciendo a medida que este es sumergido. La fuerza es transferida a un sistema neumático a través de un eje y de allí al indicador.
El método de contacto puede ser empleado para sólidos granulares o para líquidos; en estos casos se emplea una pesa o un flotador respectivamente. El inicio de medida se da por un pulsador o un temporizador, para poner la pesa o flotador conectado a un cable, en reposo sobre el material. Lo que se sensa realmente es la variación de la tensión del cable cuando se entra en contacto con los sólidos granulares o el líquido a medir.
La indicación del nivel se da por intermedio de un circuito eléctrico asociado al motor que sube y baja el cable. Los sondas eléctricas propiamente dichas, emplean métodos conductivos, capacitivos y ultrasónicos para medición de nivel.
A causa de la distancia de los electrodos, la sonda de conductividad se asemeja a una bujía. Estos dispositivos son usados con líquidos conductores. Los electrodos se alimentan con corriente continua, siendo montados dentro del recipiente contenedor del líquido; cuando el líquido: toma contacto con cualquiera de los electrodos, una corriente eléctrica fluye entre el electrodo y tierra. Este método cuando se usa para algún tipo de control, es por lo general para actuar sobre una bomba.
El método capacitivo utiliza una sonda como una de las placas de un condensador, siendo la otra placa el contenedor mismo. El material entre ellos, viene a ser dieléctrico. El cambio de nivel origina un cambio en la salida del circuito electrónico, proporcional al cambio de la capacidad por lo que este método es de indicación continua del nivel a diferencia del conductivo que sería entonces, uno discreto.
Los medidores del tipo ultrasónico se usan tanto para medición continua, como discreta de nivel, aunque generalmente su uso está dado en acciones de alarma. En todos los diseños, se genera una señal en frecuencia y la interrupción o detección de la señal generada es la base para una acción de control (detectores discretos). En medición continua, se mide el tiempo transcurrido entre la emisión de la señal y la recepción de la reflejada.
Varios tipos de dispositivos de medición indirecta de nivel son en efecto sensores de presión hidrostáticos. El más sencillo consiste en un manómetro ubicado en el nivel cero de un contenedor de líquido. Cualquier incremento de nivel causa un aumento de la presión hidrostática, la cual es medida con el manómetro. La escala del manómetro es graduada en unidades de nivel.
En el caso de método de burbujeo, se ; utiliza una tubería conectada verticalmente en el contenedor. El extremo con abertura de la tubería es ubicado en el nivel cero del contenedor. El extremo es conectado a un suministro de aire. Cuando se va a hacer la medición de nivel, el suministro de aire es regulado para que así la presión sea ligeramente más alta que la presión hidrostática. Este punto se encuentra al observar burbujas saliendo por el extremo inferior del tubo. Se lee entonces en el manómetro la indicación de nivel (pies, pulgadas, galones, etc.).
Un instrumento muy popular que utiliza el método por presión hidrostática es el transmisor de presión diferencias; en realidad, este envía una señal normalizada proporcional a la diferencia de dos presiones, una debida al líquido cuyo nivel se desea determinar (entrada alta) y otra debida a la presión atmosférica (entrada baja), siempre y cuando sea un sistema abierto (tanque abierto a la atmósfera). Para el caso de tanques cerrados, la entrada "baja" debe conectarse ya sea directamente en contacto con el gas encerrado en el extremo superior del depósito o utilizando un fluido de sello. En todo caso, la calibración adecuada permitirá una señal de salida (electrónica o neumática) proporcional al nivel.
Los primeros dispositivos usados para indicar nivel consistían de tubos de vidrio de modo tal que el operador viese el fluido de proceso. Con el correr del tiempo, los cristales planos del tipo reflexivo o transparente han reemplazado a los anteriores. En el caso de que el fluido sea peligroso (corrosivo, tóxico, etc.) como para emplear vidrio, se utilizan ¡os de tipo Éiagoético, en los cuales un imán instalado en un flotador permite el desplazamiento de un seguidor y este mecánicamente mueve un indicador relacionado a una escala graduada.
El empleo de flotadores es muy común, generalmente para acciones de control (interruptores de nivel). Del mismo modo los despSazadores, tienen acciones similares a los flotadores o boyas, con la diferencia que su movimiento, es más restringido. Cuando el nivel de líquido cambia, la cantidad cubierta por el desplazador, va creciendo a medida que este es sumergido. La fuerza es transferida a un sistema neumático a través de un eje y de allí al indicador.
El método de contacto puede ser empleado para sólidos granulares o para líquidos; en estos casos se emplea una pesa o un flotador respectivamente. El inicio de medida se da por un pulsador o un temporizador, para poner la pesa o flotador conectado a un cable, en reposo sobre el material. Lo que se sensa realmente es la variación de la tensión del cable cuando se entra en contacto con los sólidos granulares o el líquido a medir.
La indicación del nivel se da por intermedio de un circuito eléctrico asociado al motor que sube y baja el cable. Los sondas eléctricas propiamente dichas, emplean métodos conductivos, capacitivos y ultrasónicos para medición de nivel.
A causa de la distancia de los electrodos, la sonda de conductividad se asemeja a una bujía. Estos dispositivos son usados con líquidos conductores. Los electrodos se alimentan con corriente continua, siendo montados dentro del recipiente contenedor del líquido; cuando el líquido: toma contacto con cualquiera de los electrodos, una corriente eléctrica fluye entre el electrodo y tierra. Este método cuando se usa para algún tipo de control, es por lo general para actuar sobre una bomba.
El método capacitivo utiliza una sonda como una de las placas de un condensador, siendo la otra placa el contenedor mismo. El material entre ellos, viene a ser dieléctrico. El cambio de nivel origina un cambio en la salida del circuito electrónico, proporcional al cambio de la capacidad por lo que este método es de indicación continua del nivel a diferencia del conductivo que sería entonces, uno discreto.
Los medidores del tipo ultrasónico se usan tanto para medición continua, como discreta de nivel, aunque generalmente su uso está dado en acciones de alarma. En todos los diseños, se genera una señal en frecuencia y la interrupción o detección de la señal generada es la base para una acción de control (detectores discretos). En medición continua, se mide el tiempo transcurrido entre la emisión de la señal y la recepción de la reflejada.
Varios tipos de dispositivos de medición indirecta de nivel son en efecto sensores de presión hidrostáticos. El más sencillo consiste en un manómetro ubicado en el nivel cero de un contenedor de líquido. Cualquier incremento de nivel causa un aumento de la presión hidrostática, la cual es medida con el manómetro. La escala del manómetro es graduada en unidades de nivel.
En el caso de método de burbujeo, se ; utiliza una tubería conectada verticalmente en el contenedor. El extremo con abertura de la tubería es ubicado en el nivel cero del contenedor. El extremo es conectado a un suministro de aire. Cuando se va a hacer la medición de nivel, el suministro de aire es regulado para que así la presión sea ligeramente más alta que la presión hidrostática. Este punto se encuentra al observar burbujas saliendo por el extremo inferior del tubo. Se lee entonces en el manómetro la indicación de nivel (pies, pulgadas, galones, etc.).
Un instrumento muy popular que utiliza el método por presión hidrostática es el transmisor de presión diferencias; en realidad, este envía una señal normalizada proporcional a la diferencia de dos presiones, una debida al líquido cuyo nivel se desea determinar (entrada alta) y otra debida a la presión atmosférica (entrada baja), siempre y cuando sea un sistema abierto (tanque abierto a la atmósfera). Para el caso de tanques cerrados, la entrada "baja" debe conectarse ya sea directamente en contacto con el gas encerrado en el extremo superior del depósito o utilizando un fluido de sello. En todo caso, la calibración adecuada permitirá una señal de salida (electrónica o neumática) proporcional al nivel.
Medición de Flujo
Medición de Flujo: La medición de flujo constituye tal vez, el eje más alto porcentaje en cuanto a medición de variables industriales se refiere. Ninguna otra variable tiene la importancia de esta, ya que sin mediciones de flujo, sería imposible el balance de materiales, el control de calidad y aún la operación de procesos continuos.
Existen muchos métodos para medir flujos, en la mayoría de los cuales, es imprescindible el conocimiento de algunas características básicas de los fluidos para una buena selección del mejor método a emplear. Estas características incluyen viscosidad, densidad, gravedad específica, compresibilidad, temperatura y presión, las cuales no vamos a detallar aquí.
Básicamente, existen dos formas de medir el flujo: el caudal y el flujo total. El caudal es la cantidad de fluido que pasa por un punto determinado en cualquier momento dado. El flujo total de la cantidad de fluido por un punto determinado durante un periodo de tiempo específico. Veamos a continuación algunos de los métodos empleados para medir caudal.
Otra restricción de tubería para la medición del flujo es el tubo Venturi, el cual es especialmente diseñado a la longitud de la "tubería". Tiene la forma de dos embudos unidos por sus aberturas más pequeñas y se utiliza para tuberías grandes; es más preciso que la placa-orificio, pero es considerablemente más costoso y más difícil de instalar.
Un promedio entre la placa-orificio y el tubo Venturi es la tobera de flujo, la cual asemeja la mitad de un tubo Venturi por donde entra el fluido; este dispositivo es tan preciso como el tubo Venturi, pero no tan costoso ni difícil de instalar. Las tomas de presión utilizadas para el tubo Venturi, están situadas en los puntos de máximo y mínimo diámetro de tubería. Para el caso de la tobera, se ubican según recomendaciones del fabricante.
Otro elemento primario para medir flujo por el método de presión diferencial es el Tubo Pilot, el cual en su forma más simple,consiste en un tubo con un orificio pequeño en el punto de medición (impacto).
Cuando el fluido ingresa al tubo, su velocidad es cero y su presión es máxima. La otra presión para obtener la medida diferencial, se toma de un punto cercano a la pared de la tubería. Realmente, e! tubo Pilot mide velocidad de fluido y no caudal y además no necesariamente el fluido debe estar encerrado en una tubería. Podría por ejemplo, ser usado para medir el flujo del agua de un río o flujo de aire ai ser suspendido desde un avión.
Existen muchos métodos para medir flujos, en la mayoría de los cuales, es imprescindible el conocimiento de algunas características básicas de los fluidos para una buena selección del mejor método a emplear. Estas características incluyen viscosidad, densidad, gravedad específica, compresibilidad, temperatura y presión, las cuales no vamos a detallar aquí.
Básicamente, existen dos formas de medir el flujo: el caudal y el flujo total. El caudal es la cantidad de fluido que pasa por un punto determinado en cualquier momento dado. El flujo total de la cantidad de fluido por un punto determinado durante un periodo de tiempo específico. Veamos a continuación algunos de los métodos empleados para medir caudal.
Otra restricción de tubería para la medición del flujo es el tubo Venturi, el cual es especialmente diseñado a la longitud de la "tubería". Tiene la forma de dos embudos unidos por sus aberturas más pequeñas y se utiliza para tuberías grandes; es más preciso que la placa-orificio, pero es considerablemente más costoso y más difícil de instalar.
Un promedio entre la placa-orificio y el tubo Venturi es la tobera de flujo, la cual asemeja la mitad de un tubo Venturi por donde entra el fluido; este dispositivo es tan preciso como el tubo Venturi, pero no tan costoso ni difícil de instalar. Las tomas de presión utilizadas para el tubo Venturi, están situadas en los puntos de máximo y mínimo diámetro de tubería. Para el caso de la tobera, se ubican según recomendaciones del fabricante.
Otro elemento primario para medir flujo por el método de presión diferencial es el Tubo Pilot, el cual en su forma más simple,consiste en un tubo con un orificio pequeño en el punto de medición (impacto).
Cuando el fluido ingresa al tubo, su velocidad es cero y su presión es máxima. La otra presión para obtener la medida diferencial, se toma de un punto cercano a la pared de la tubería. Realmente, e! tubo Pilot mide velocidad de fluido y no caudal y además no necesariamente el fluido debe estar encerrado en una tubería. Podría por ejemplo, ser usado para medir el flujo del agua de un río o flujo de aire ai ser suspendido desde un avión.
Medición de presión
Medición de Presión: La presión queda determinada por el cociente entre una fuerza y el área sobre la que actúa esa fuerza.
Así, si una fuerza F actúa sobre una superficie A, la presión P queda estrictamente definida por la siguiente expresión:
P = F /A
Los sensores de presión pueden agruparse en:
• basados en principios mecánicos, como deformación
por fuerza.
• basados en principios eléctricos, por conversión de una
deformación o fuerza a una propiedad eléctrica.
Manómetro de tubo en forma de "U"
La forma más tradicional de medir presión en forma precisa utiliza un tubo de vidrio en
forma de "U", donde se deposita una cantidad de líquido de densidad conocida (para presiones altas, se utiliza habitualmente mercurio para que el tubo tenga dimensiones
razonables; sin embargo, para presiones bajas el manómetro en U de mercurio sería
poco sensible).
El manómetro en forma de "U" conforma un sistema de medición más bien absoluto y no depende, por lo tanto, de calibración. Esta ventaja lo hace un artefacto muy común. Su desventaja principal es la longitud de tubos necesarios para una medición de presiones
altas y, desde el punto de vista de la instrumentación de procesos, no es sencillo transformarlo en un sistema de transmisión remota de presión.
Tubo bourdon
El tubo Bourdon funciona en base a la relación entre la carga y la deformación es una constante del material, conocida como módulo de Young. Si la constante de deformación es conocida, se puede obtener la carga según: Carga = D*Y. Entonces, ante deformaciones pequeñas de materiales elásticos, se peden cuantificar las cargas (fuerzas) solicitantes. El tubo Bourdon es tal vez el manómetro más común en plantas de procesos que requieran medición de presiones.
Consiste de un tubo metálico achatado y curvado en forma de "C", abierto sólo en un extremo. Al aplicar una presión al interior del tubo, la fuerza generada en la superficie exterior de la "C" es mayor que la fuerza generada en la superficie interior, de modo que se genera una fuerza neta que deforma la "C" hacia una "C" más abierta. Esta deformación es una medición de la presión aplicada, que puede determinarse por el desplazamiento mecánico del puntero conectado al tubo Bourdon, o mediante un sistema de variación de resistencia o campos
eléctricos o magnéticos. Otras formas típicas del tubo son espiral y helicoidal.
Otros basados en fuerza
Fuelle: Es un recipiente cerrado, con lados que pueden expandirse o contraerse como un acordeón. La posición del fuelle sin presión puede ser determinada por el mismo fuelle o por un resorte. La presión es aplicada sobre la cara del fuelle y su deformación y su posición dependen de la presión. Diafragma: Es un sensor que está típicamente construido por dos discos flexibles y cuando una presión es aplicada sobre una cara del diafragma, la posición de la cara del disco cambia por deformación. La posición está relacionada con la presión.
Así, si una fuerza F actúa sobre una superficie A, la presión P queda estrictamente definida por la siguiente expresión:
P = F /A
Los sensores de presión pueden agruparse en:
• basados en principios mecánicos, como deformación
por fuerza.
• basados en principios eléctricos, por conversión de una
deformación o fuerza a una propiedad eléctrica.
Manómetro de tubo en forma de "U"
La forma más tradicional de medir presión en forma precisa utiliza un tubo de vidrio en
forma de "U", donde se deposita una cantidad de líquido de densidad conocida (para presiones altas, se utiliza habitualmente mercurio para que el tubo tenga dimensiones
razonables; sin embargo, para presiones bajas el manómetro en U de mercurio sería
poco sensible).
El manómetro en forma de "U" conforma un sistema de medición más bien absoluto y no depende, por lo tanto, de calibración. Esta ventaja lo hace un artefacto muy común. Su desventaja principal es la longitud de tubos necesarios para una medición de presiones
altas y, desde el punto de vista de la instrumentación de procesos, no es sencillo transformarlo en un sistema de transmisión remota de presión.
Tubo bourdon
El tubo Bourdon funciona en base a la relación entre la carga y la deformación es una constante del material, conocida como módulo de Young. Si la constante de deformación es conocida, se puede obtener la carga según: Carga = D*Y. Entonces, ante deformaciones pequeñas de materiales elásticos, se peden cuantificar las cargas (fuerzas) solicitantes. El tubo Bourdon es tal vez el manómetro más común en plantas de procesos que requieran medición de presiones.
Consiste de un tubo metálico achatado y curvado en forma de "C", abierto sólo en un extremo. Al aplicar una presión al interior del tubo, la fuerza generada en la superficie exterior de la "C" es mayor que la fuerza generada en la superficie interior, de modo que se genera una fuerza neta que deforma la "C" hacia una "C" más abierta. Esta deformación es una medición de la presión aplicada, que puede determinarse por el desplazamiento mecánico del puntero conectado al tubo Bourdon, o mediante un sistema de variación de resistencia o campos
eléctricos o magnéticos. Otras formas típicas del tubo son espiral y helicoidal.
Otros basados en fuerza
Fuelle: Es un recipiente cerrado, con lados que pueden expandirse o contraerse como un acordeón. La posición del fuelle sin presión puede ser determinada por el mismo fuelle o por un resorte. La presión es aplicada sobre la cara del fuelle y su deformación y su posición dependen de la presión. Diafragma: Es un sensor que está típicamente construido por dos discos flexibles y cuando una presión es aplicada sobre una cara del diafragma, la posición de la cara del disco cambia por deformación. La posición está relacionada con la presión.
Simbologia
Simbologia: En instrumentación y control, se emplea un sistema especial de símbolos con el objeto de transmitir de una forma más fácil y específica la información. Esto es indispensable en el diseño, selección, operación y mantenimiento de los sistemas de control.
Un sistema de símbolos ha sido estandarizado por la ISA (Sociedad de Instrumentistas de América). La siguiente información es de la norma: ANSI/ISA-S5.1-1984(R 1992).
Las necesidades de varios usuarios para sus procesos son diferentes. La norma reconoce estas necesidades, proporcionando métodos de simbolismo alternativos. Se mantienen varios ejemplos agregando la información o simplificando el simbolismo, según se desee.
El simbolismo y métodos de identificación proporcionados en esta norma son aplicables a todas las clases de medida del proceso e instrumentación de control. Ellos no sólo son aplicables a la descripción discreta de instrumentos y sus funciones, pero también para describir las funciones análogas de sistemas que son "despliegue compartido," "control compartido", "control distribuido" y "control por computadora".
La indicación de los símbolos de varios instrumentos o funciones han sido aplicados en las típicas formas. El uso no implica que la designación o aplicaciones de los instrumentos o funciones estén restringidas en ninguna manera. Donde los símbolos alternativos son mostrados sin una preferencia, la secuencia relativa de los números no implica una preferencia.
La burbuja puede ser usada para etiquetar símbolos distintivos, tal como aquellos para válvulas de control. En estos casos la línea que esta conectando a la burbuja con el símbolo del instrumento esta dibujado muy cerca de él, pero no llega a tocarlo. En otras situaciones la burbuja sirve para representar las propiedades del instrumento.
Un símbolo distintivo cuya relación con el lazo es simplemente aparentar que un diagrama no necesita ser etiquetado individualmente. Por ejemplo una placa con orificio o una válvula de control que es parte de un sistema más largo no necesita ser mostrado con un número de etiqueta en un diagrama. También, donde hay un elemento primario conectado a otro instrumento en un diagrama, hace uso de un símbolo para representar que el elemento primario en un diagrama puede ser opcional.
Los tamaños de las etiquetas de las burbujas y de los símbolos de los misceláneos son los tamaños generalmente recomendados. Los tamaños óptimos pueden variar dependiendo en donde o no es reducido el diagrama y dependiendo el número de caracteres seleccionados apropiadamente acompañados de otros símbolos de otros equipos en un diagrama.
Las líneas de señales pueden ser dibujadas en un diagrama enteramente o dejando la parte apropiada de un símbolo en cualquier ángulo. La función de los designadores de bloque y los números de las etiquetas podrían ser siempre mostrados con una orientación horizontal. Flechas direccionales podrían ser agregadas a las líneas de las señales cuando se necesite aclarar la dirección del flujo para información. La aplicación de flechas direccionales facilita el entendimiento de un sistema dado.
Eléctrico, neumático o cualquier otro suministro de energía para un instrumento no se espera que sea mostrado, pero es esencial para el entendimiento de las operaciones de los instrumentos en un lazo de control.
En general, una línea de una señal representara la interconexión entre dos instrumentos en un diagrama de flujo siempre a través de ellos. Pueden ser conectados físicamente por más de una línea.
La secuencia en cada uno de los instrumentos o funciones de un lazo están conectados en un diagrama y pueden reflejar el funcionamiento lógico o información acerca del flujo, algunos de estos arreglos no necesariamente corresponderán a la secuencia de la señal de conexión. Un lazo electrónico usando una señal analógica de voltaje requiere de un cableado paralelo, mientras un lazo que usa señales de corriente analógica requiere de series de interconexión. El diagrama en ambos casos podría ser dibujado a través de todo el cableado, para mostrar la interrelación funcional claramente mientras se mantiene la presentación independiente del tipo de instrumentación finalmente instalado.
Un sistema de símbolos ha sido estandarizado por la ISA (Sociedad de Instrumentistas de América). La siguiente información es de la norma: ANSI/ISA-S5.1-1984(R 1992).
Las necesidades de varios usuarios para sus procesos son diferentes. La norma reconoce estas necesidades, proporcionando métodos de simbolismo alternativos. Se mantienen varios ejemplos agregando la información o simplificando el simbolismo, según se desee.
El simbolismo y métodos de identificación proporcionados en esta norma son aplicables a todas las clases de medida del proceso e instrumentación de control. Ellos no sólo son aplicables a la descripción discreta de instrumentos y sus funciones, pero también para describir las funciones análogas de sistemas que son "despliegue compartido," "control compartido", "control distribuido" y "control por computadora".
La indicación de los símbolos de varios instrumentos o funciones han sido aplicados en las típicas formas. El uso no implica que la designación o aplicaciones de los instrumentos o funciones estén restringidas en ninguna manera. Donde los símbolos alternativos son mostrados sin una preferencia, la secuencia relativa de los números no implica una preferencia.
La burbuja puede ser usada para etiquetar símbolos distintivos, tal como aquellos para válvulas de control. En estos casos la línea que esta conectando a la burbuja con el símbolo del instrumento esta dibujado muy cerca de él, pero no llega a tocarlo. En otras situaciones la burbuja sirve para representar las propiedades del instrumento.
Un símbolo distintivo cuya relación con el lazo es simplemente aparentar que un diagrama no necesita ser etiquetado individualmente. Por ejemplo una placa con orificio o una válvula de control que es parte de un sistema más largo no necesita ser mostrado con un número de etiqueta en un diagrama. También, donde hay un elemento primario conectado a otro instrumento en un diagrama, hace uso de un símbolo para representar que el elemento primario en un diagrama puede ser opcional.
Los tamaños de las etiquetas de las burbujas y de los símbolos de los misceláneos son los tamaños generalmente recomendados. Los tamaños óptimos pueden variar dependiendo en donde o no es reducido el diagrama y dependiendo el número de caracteres seleccionados apropiadamente acompañados de otros símbolos de otros equipos en un diagrama.
Las líneas de señales pueden ser dibujadas en un diagrama enteramente o dejando la parte apropiada de un símbolo en cualquier ángulo. La función de los designadores de bloque y los números de las etiquetas podrían ser siempre mostrados con una orientación horizontal. Flechas direccionales podrían ser agregadas a las líneas de las señales cuando se necesite aclarar la dirección del flujo para información. La aplicación de flechas direccionales facilita el entendimiento de un sistema dado.
Eléctrico, neumático o cualquier otro suministro de energía para un instrumento no se espera que sea mostrado, pero es esencial para el entendimiento de las operaciones de los instrumentos en un lazo de control.
En general, una línea de una señal representara la interconexión entre dos instrumentos en un diagrama de flujo siempre a través de ellos. Pueden ser conectados físicamente por más de una línea.
La secuencia en cada uno de los instrumentos o funciones de un lazo están conectados en un diagrama y pueden reflejar el funcionamiento lógico o información acerca del flujo, algunos de estos arreglos no necesariamente corresponderán a la secuencia de la señal de conexión. Un lazo electrónico usando una señal analógica de voltaje requiere de un cableado paralelo, mientras un lazo que usa señales de corriente analógica requiere de series de interconexión. El diagrama en ambos casos podría ser dibujado a través de todo el cableado, para mostrar la interrelación funcional claramente mientras se mantiene la presentación independiente del tipo de instrumentación finalmente instalado.
Instrumentos de medicion
Instrumentos de medición: Un instrumento de medición es un aparato que se usa para comparar magnitudes físicas mediante un proceso de medición. Como unidades de medida se utilizan objetos y sucesos previamente establecidos como estándares o patrones, y de la medición resulta un número que es la relación entre el objeto de estudio y la unidad de referencia. Los instrumentos de medición son el medio por el que se hace esta lógica conversión.
Concepto de medida: Se conoce como medida al resultado de medir una cantidad desconocida utilizando como parámetro una cantidad conocida de la misma magnitud que será elegida como unidad.
Una unidad de medida es la cantidad estandarizada de una determinada magnitud física, en tanto, para evitar equivocaciones o malas mediciones el Comité Internacional de Pesos y Medidas estableció 7 magnitudes fundamentales y sus correspondientes patrones para medirlas, estas son: longitud, masa, tiempo, intensidad eléctrica, temperatura, cantidad de sustancia e intensidad luminosa.
Unidades de medida: El Sistema Internacional de Unidades es la forma actual del Sistema Métrico Decimal y establece las unidades que deben ser utilizadas internacionalmente. Fue creado por el Comité Internacional de Pesas y Medidas con sede en Francia. En él se establecen 7 magnitudes fundamentales, con los patrones para medirlas:
-Longitud
-Masa
-Tiempo
-Intensidad eléctrica
-Temperatura
-Intensidad luminosa
-Cantidad de sustancia
Una unidad de medida es la cantidad estandarizada de una determinada magnitud física, en tanto, para evitar equivocaciones o malas mediciones el Comité Internacional de Pesos y Medidas estableció 7 magnitudes fundamentales y sus correspondientes patrones para medirlas, estas son: longitud, masa, tiempo, intensidad eléctrica, temperatura, cantidad de sustancia e intensidad luminosa.
Unidades de medida: El Sistema Internacional de Unidades es la forma actual del Sistema Métrico Decimal y establece las unidades que deben ser utilizadas internacionalmente. Fue creado por el Comité Internacional de Pesas y Medidas con sede en Francia. En él se establecen 7 magnitudes fundamentales, con los patrones para medirlas:
-Longitud
-Masa
-Tiempo
-Intensidad eléctrica
-Temperatura
-Intensidad luminosa
-Cantidad de sustancia
Suscribirse a:
Entradas (Atom)